simplify PLEASE HELP ASAP

Answer:
[tex]0 < x < 6[/tex]
Step-by-step explanation:
This question asks to solve an inequality which can be written as:
[tex]\sqrt{x^2-6x+9} < 3[/tex]
Solve for x:
[tex]\sqrt{x^2-6x+9} < 3\\x^2-6x+9 < 9\\x^2-6x < 0\\x(x-6) < 0[/tex]
From here we can deduce that the inequality is [tex]0[/tex] when:
[tex]x = 0[/tex] or [tex]x = 6[/tex]
We can write the solution as:
[tex]0 < x < 6[/tex]
[tex]\qquad\qquad\huge\underline{{\sf Answer}}[/tex]
Let's evaluate ~
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 6x + 9 } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 3x - 3x+ 9 } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{}(x - 3) - 3(x - 3) } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ (x - 3)(x - 3) } [/tex]
[tex]\qquad \sf \dashrightarrow \: \sqrt{ (x - 3) {}^{2} } [/tex]
[tex]\qquad \sf \dashrightarrow \: { (x - 3) {}^{} } [/tex]
Now, we have been given that value of x :
[tex]\qquad \sf \dashrightarrow \:x < 3[/tex]
So, let's plug the value of x as 3 in the given expression ~
[tex]\qquad \sf \dashrightarrow \:3 - 3[/tex]
[tex]\qquad \sf \dashrightarrow \:0[/tex]
Therefore, we can conclude that :
[tex]\qquad \sf \dashrightarrow \: \sqrt{ {x}^{2} - 6x + 9 } < 0[/tex]
Value of the expression should be less than 0