Respuesta :

Answer:

a = 25 m²

b = 5 m

c = 7.94 m

d = 35.73 m²

Code:    H I A B

Step-by-step explanation:

Formulae

Pythagoras’ Theorem:    [tex]a^2+b^2=c^2[/tex]

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

Area of a square = x²  (where x is the side length)

------------------------------------------------------------------------------------------------------

Assuming that all the quadrilaterals are squares.

Side length of blue square with area 16 m² = √16 = 4 m

Side length of yellow square with area 9 m² = √9 = 3 m

Use Pythagoras' Theorem to find the length of b:

[tex]\implies 4^2+3^2=b^2[/tex]

[tex]\implies b^2=25[/tex]

[tex]\implies b=\sqrt{25}[/tex]

[tex]\implies b=5\: \sf m[/tex]

Now we have found length b, we can find area a:

[tex]\textsf{Area a}=b^2=5^2=25\: \sf m^2[/tex]

Side length of purple square with area 144 m² = √144 = 12 m

Side length of green square with area 81 m² = √81 = 9 m

Use Pythagoras' Theorem to find the length of c:

[tex]\implies 9^2+c^2=12^2[/tex]

[tex]\implies c^2=63[/tex]

[tex]\implies c=\sqrt{63}[/tex]

[tex]\implies c=3\sqrt{7}[/tex]

[tex]\implies c=7.94\: \textsf{(nearest hundredth)}[/tex]

Now we have found length d, we can find area d:

[tex]\textsf{Area d}=\dfrac{1}{2}(9)(7.94)=35.73\: \sf m^2[/tex]

Code:    H I A B

Find b

  • √16+9
  • √25
  • 5

#a

Area

  • 25m²

H

#b

Done already

  • I

#c

  • √144-81
  • √63
  • c=7.94

A

#d

  • 1/2(7.94)(9)
  • 35.73m²

B

Code is

  • HIAB