Respuesta :

Answer:

[tex]\huge\boxed{\sf x = 8.2}[/tex]

Step-by-step explanation:

Since it is a right-angled triangle, we will apply Pythagoras Theorem.

Given are:

Base = 16

Perpendicular = x

Hypotenuse = 18

Pythagoras Theorem:

[tex]\sf (Hypotenuse)^2=(Base)^2+(Perpendicular)^2[/tex]

(18)² = (16)² + (x)²

324 = 256 + x²

Subtract 256 to both sides

324 - 256 = x²

68 = x²

Take sqrt on both sides

8.2 = x

x = 8.2

[tex]\rule[225]{225}{2}[/tex]

Step-by-step explanation:

We have,

  • Perpendicular = 16
  • Hypotenuse = 18
  • Base = x

We know that,

[tex] \large\boxed{\sf (Hypotenuse)^2=(Perpendicular)^2+(Base)^2}[/tex]

[tex]\longmapsto \sf \: (18)^2=(16)^2+x^2[/tex]

[tex]\longmapsto \sf \: (18)^2-(16)^2=x^2[/tex]

[tex]\longmapsto \sf \: x^2=324-256[/tex]

[tex]\longmapsto \sf \: x^2=68[/tex]

[tex]\longmapsto \sf \: x = \sqrt{68}[/tex]

[tex]\longmapsto \sf \: x ≈8.25 [/tex]

Otras preguntas