Answer:
[tex]f(x)=4\cos(2x)+3[/tex]
Step-by-step explanation:
Using the general equation [tex]f(x)=a\cos(bx+c)+d[/tex], we already know that [tex]a=4[/tex] and [tex]d=3[/tex], but we need to find [tex]b[/tex] from the period:
[tex]\frac{2\pi}{|b|}=\pi\\ 2\pi=b\pi\\2=b[/tex]
Hence, the cosine function is [tex]f(x)=4\cos(2x)+3[/tex]