Answer:
[tex]l(\overline {AB})\approx9.22\: units[/tex]
Step-by-step explanation:
- A = (-2, -3), B = (-8, 4) (Given)
- [tex]\implies x_1= -2,\: y_1=-3,\: x_2=-8,\: y_2= 4[/tex]
- By distance formula length of segment AB can be given as:
- [tex]l(\overline {AB})=\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]
- [tex]l(\overline {AB})=\sqrt{[-8-(-2)]^2 +[4-(-3)]^2}[/tex]
- [tex]l(\overline {AB})=\sqrt{[-8+2]^2 +[4+3]^2}[/tex]
- [tex]l(\overline {AB})=\sqrt{[-6]^2 +[7]^2}[/tex]
- [tex]l(\overline {AB})=\sqrt{36 +49}[/tex]
- [tex]l(\overline {AB})=\sqrt{85}[/tex]
- [tex]l(\overline {AB})=9.21954446\: units[/tex]
- [tex]l(\overline {AB})\approx9.22\: units[/tex]