Answer:
Cylinder
[tex]\textsf{Volume of a cylinder}=\sf \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
[tex]\begin{aligned}\implies \sf V &= \sf \pi (6)^2(18)\\& = \sf 648 \pi \: cm^3\end{aligned}[/tex]
Cube
[tex]\textsf{Volume of a cube}=\sf x^3\quad\textsf{(where x is the side length)}[/tex]
Given:
[tex]\begin{aligned}\implies \sf V &= 8^3\\& = \sf 512 \: cm^3\end{aligned}[/tex]
Volume available to be filled with water
Volume of cylinder - volume of cube
= 684π - 512
= 1532.75204 cm³
1 litre = 1000 cm³
⇒ 1.5 litres = 1000 × 1.5 = 1500 cm³
As 1500 < 1532.75204, the volume of water poured into the container is smaller than the empty space available in the cylinder. Therefore, the water will not come over the top of the container.