Respuesta :

Answer:

[tex]\boxed{\bf 7 \times 10 {}^{ - 3}} [/tex]

Step-by-step explanation:

  • [tex] \cfrac{6.3}{9} \times \dfrac {10 ^{ - 5} }{10 {}^{ - 3} }[/tex]
  • [tex]0.7 \times \cfrac{10 {}^{ - 5} }{10 {}^{ - 3} } [/tex]
  • [tex]0.7 \times 10 { }^{ - 5 - 3 \times - 1} [/tex]
  • [tex]0.7 \times 10 {}^{ - 5 + 3} [/tex]
  • [tex]0.7 \times 10 { }^{ - 2} [/tex]

Write 0.7 *10^-2 into scientific notation:

  • [tex]7 \times 10 {}^{ - 3} [/tex]

Hope this helps! ^^"

Answer:

[tex]7 \times 10^{-3}[/tex]

Step-by-step explanation:

[tex]\begin{aligned}\dfrac{6.3 \times 10^{-5}}{9 \times 10^{-3}} & =\dfrac{6.3}{9} \times \dfrac{10^{-5}}{10^{-3}}\\\\& = 0.7 \times \dfrac{10^{-5}}{10^{-3}}\end{aligned}[/tex]

[tex]\textsf{Apply exponent rule} \quad \dfrac{a^b}{a^c}=a^{b-c}:[/tex]

[tex]\begin{aligned}\implies 0.7 \times \dfrac{10^{-5}}{10^{-3}} &=0.7 \times 10^{-5-(-3)}\\& = 0.7 \times 10^{-2}\end{aligned}[/tex]

[tex]\textsf{Rewrite}\:0.7\:\textsf{as}\: 7 \times 10^{-1}:[/tex]

[tex]\implies 0.7 \times 10^{-2}=7 \times 10^{-1} \times 10^{-2}[/tex]

[tex]\textsf{Apply exponent rule} \quad a^b \times a^c=a^{bc}:[/tex]

[tex]\implies 7 \times 10^{-1} \times 10^{-2}=7 \times 10^{-3}[/tex]