Respuesta :

kkfoug

Answer:

x = [tex]\frac{\sqrt{22} }{2}[/tex]

Step-by-step explanation:

Using the Pythagorean Theorem we can solve this problem.

The legs of the triangle will be the same (the dashes in the middle of the line indicates they are the same).

The Pythagorean Theorem will look like this:

[tex]a^{2}+a^{2} = (\sqrt {11})^{2}[/tex]

Now, let's find a:

[tex]2a^{2} = 11[/tex]                The square of a radical will be whatever is under the arch

[tex]a^{2}=\frac{11}{2}[/tex]                  Divide 11 by 2

[tex]\sqrt{a^{2} } = \sqrt{\frac{11}{2} }[/tex]           Square root both sides

a = [tex]\frac{\sqrt{22} }{2}[/tex]

Therefore, the length of side x is equal to [tex]\frac{\sqrt{22} }{2}[/tex].

Hope this helps!!