Respuesta :

[tex]\huge\color{pink}\boxed{\colorbox{Black}{♔︎Answer♔︎}}[/tex]

349525

Step-by-step explanation:

[tex] = \textsf{\underline{\large{To find :-}}}[/tex]

The sum of first 10 terms

[tex] \textsf{\underline{\large{Given :-}}}[/tex]

a = 1

r = 4

[tex]\sf{ \huge{ \underline{ \underline {Solution :-}}}}[/tex]

[tex] \sf S_n = \frac{a( {r}^{n} - 1)}{(r - 1)} ,if \: r ≠ 1[/tex]

here n = 10

we just need to substitute the value

[tex] \sf \implies S_{10} = \frac{1( {4}^{10} - 1) }{(4 - 1)} \\ \\ \sf \implies S_{10} = \frac{ {4}^{10} - 1 }{3} \\ \\ \sf \implies S_{10} = \frac{1048576 - 1}{3} \\ \\ \sf \implies S_{10} = \frac{1048575}{3} \\ \\ \sf { \red{ \implies S_{10} = 349525}}[/tex]

Answer:

349525

Step-by-step explanation:

Sum of a Geometric Sequence

  • Sₙ = a(rⁿ - 1) / (r - 1)

Taking :

  • a = 1
  • r = 4
  • n = 10

Solving

  • S₁₀ = 1(4¹⁰ - 1) / 4 - 1
  • S₁₀ = 1048576 - 1 / 3
  • S₁₀ = 1048575/3
  • S₁₀ = 349525