Respuesta :

Answer:

[tex]2^{\frac{4}{5}}[/tex]

Step-by-step explanation:

Factor 16 using prime factorisation:

16 ÷ 2 = 8

8 ÷ 2 = 4

4 ÷ 2 = 2

⇒ 16 = 2⁴

Substitute 16  for  2⁴:

[tex]\implies (\sqrt[5]{16})^1=(\sqrt[5]{2^4})^1[/tex]

[tex]\textsf{Apply exponent rule}\quad \sqrt[n]{a^b} =a^{\frac{b}{n}}:[/tex]

[tex]\implies (\sqrt[5]{2^4})^1=(2^{\frac{4}{5}})^1[/tex]

[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]

[tex]\implies (2^{\frac{4}{5}})^1=2^{\frac{4}{5}}[/tex]