Respuesta :
The equivalent expression of the expression [tex]\frac{9x^{-1}y^{-9}}{-15x^5y^{-3}}[/tex] is [tex]-3x^{-6}y^{-6}[/tex]
How to evaluate the expression?
The expression is given as:
[tex]\frac{9x^{-1}y^{-9}}{-15x^5y^{-3}}[/tex]
Divide 9 and 15 by -3
[tex]-\frac{3x^{-1}y^{-9}}{5x^5y^{-3}}[/tex]
Apply the law of indices
[tex]-3x^{-1 - 5}y^{-9 + 3}[/tex]
Evaluate the sum and the differences in the exponents
[tex]-3x^{-6}y^{-6}[/tex]
Hence, the equivalent expression of the expression [tex]\frac{9x^{-1}y^{-9}}{-15x^5y^{-3}}[/tex] is [tex]-3x^{-6}y^{-6}[/tex]
Read more about equivalent expression at;
https://brainly.com/question/2972832
#SPJ4
Answer:
The answer is B for short.
Step-by-step explanation: