Answer:
[tex]\textsf{A)} \quad y=-\sqrt{x-3}+4[/tex]
Step-by-step explanation:
Translations
For [tex]a > 0[/tex]
[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
Parent function (shown in blue on attached diagram):
[tex]y=-\sqrt{x}[/tex]
Shifted 4 units up (shown in orange on attached diagram):
[tex]\implies y=-\sqrt{x}+4[/tex]
Shifted 3 units right (shown in purple on attached diagram):
[tex]\implies y=-\sqrt{x-3}+4[/tex]