Respuesta :

  • secØcosØ-cos²Ø
  • cosØ(secØ-cosØ)
  • cosØ(1/cosØ-cosØ)
  • cosØ(1-cos²Ø)/cosØ
  • 1-cos²Ø
  • sin²Ø

Done

Answer:

[tex]sin^2(\theta)[/tex]

Step-by-step explanation:

Step 1:  Take out cos from both sides of the minus

[tex]sec(\theta)\ cos(\theta)-cos^2(\theta)[/tex]

[tex]cos(\theta)*(sec(\theta)-cos(\theta))[/tex]

Step 2:  Convert sec to 1/cos and distribute

[tex]cos(\theta)*(\frac{1}{cos(\theta)}-cos(\theta))[/tex]

[tex](\frac{1*cos(\theta)}{cos(\theta)})-(cos(\theta)*cos(\theta)})[/tex]

[tex]1-cos^2(\theta)[/tex]

Step 3:  Simplify

[tex]1-cos^2(\theta)[/tex] can also be interpreted as [tex]sin^2(\theta)[/tex]

Answer:  [tex]sin^2(\theta)[/tex]