Respuesta :

Answer:

25

Step-by-step explanation:

If ΔDGH ~ ΔDEF , then [tex]\frac{DG}{DE}[/tex] = [tex]\frac{GH}{EF}[/tex]

[tex]\frac{x+3}{2x-1}[/tex] = [tex]\frac{52}{91}[/tex]

After cross-multiplication: 52(2x - 1) = 91(x + 3)

104x - 52 = 91x + 273

13x = 325

x = 25

Answer:

x = 25

Step-by-step explanation:

DGH~DEF ⇒ their corresponding sides are proportional

then

[tex]\frac{DG}{DE} =\frac{GH}{EF}[/tex]

then

[tex]\frac{52}{91} =\frac{x+3}{2x-1}[/tex]

then

[tex]\frac{4}{7} =\frac{x+3}{2x-1}[/tex]

then

4(2x-1) = 7(x+3)   [cross multiply]

then

8x - 4 = 7x + 21

then

8x - 7x = 21 + 4

then

x = 25