Respuesta :

Answer:

(3,2)

Step-by-step explanation:

Setting up equation so we can use substitution method

x - y = 1 , x + 3y = 9

step 1 set first equation equal to x by adding y to both sides so we can use the substitution method to solve the system of equations.

x = y + 1 , x + 3y = 9

now we can plug in ( or substitute hence substitution method ) the first equation into the second

Solving for y using the substitution method

x + 3y = 9

plug in x = y + 1

y + 1 + 3y = 9

combine like terms

4y + 1 = 9

subtract 1 from both sides

4y = 8

divide both sides by 4

y = 2

Now to find the value of x we plug in the value of y into one of the equations and solve for x.

Solving for x

x - y = 1

y = 2

x - 2 = 1

add 2 to both sides

x = 3

The solution would be (3,2)

Answer:

x = 3 and y = 2 or (3,2) in coordinate form

Step-by-step explanation:

Given:

[tex]\displaystyle \large{\begin{cases} x-y=1 \\ x+3y=9 \end{cases}}[/tex]

Solve by elimination of x-terms by multiplying either one of equations with -1:

For this, I choose to multiply -1 in first equation:

[tex]\displaystyle \large{\begin{cases} -1(x-y=1) \\ x+3y=9 \end{cases}}\\\displaystyle \large{\begin{cases} -x+y=-1 \\ x+3y=9 \end{cases}}[/tex]

Then add both equations:

[tex]\displaystyle \large{-x+x+y+3y=-1+9}\\\displaystyle \large{4y=8}[/tex]

Divide both sides:

[tex]\displaystyle \large{\dfrac{4y}{4} = \dfrac{8}{4}}\\\displaystyle \large{y=2}[/tex]

Next, substitute y = 2 in one of equations to solve for x:

For this, I choose to substitute y = 2 in the first equation:

[tex]\displaystyle \large{x-y=1}[/tex]

Substitute y = 2 in:

[tex]\displaystyle \large{x-2=1}[/tex]

Add both sides by 2:

[tex]\displaystyle \large{x-2+2=1+2}\\\displaystyle \large{x=3}[/tex]

Hence, the solution is x = 3 and y = 2 or you can write as in coordinate form (3,2)

__________________________________________________________

First method is elimination method, I’ll demonstrate another method which is by using matrices to find the solutions.

Given:

[tex]\displaystyle \large{\begin{cases} x-y=1 \\ x+3y=9 \end{cases}}[/tex]

Write the system of equations in matrices form:

[tex]\displaystyle \large{\left[\begin{array}{ccc}1&-1\\1&3\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}1\\9\end{array}\right]}[/tex]

Let:

[tex]\displaystyle \large{A=\left[\begin{array}{ccc}1&-1\\1&3\end{array}\right] }\\\displaystyle \large{X=\left[\begin{array}{ccc}x\\y\end{array}\right] \\\displaystyle \large{B = \left[\begin{array}{ccc}1\\9\end{array}\right] }[/tex]

From [tex]\displaystyle \large{AX=B \to X=A^{-1}B}[/tex] where:

[tex]\displaystyle \large{A^{-1}=\dfrac{1}{\det A} \left[\begin{array}{ccc}d&-b\\-c&a\end{array}\right] = \dfrac{1}{ad-bc} \left[\begin{array}{ccc}d&-b\\-c&a\end{array}\right] }[/tex]

Find [tex]\displaystyle \large{\det A}[/tex]:

[tex]\displaystyle \large{\det A = ad-bc = 3+1=4}[/tex]

Therefore:

[tex]\displaystyle \large{A^{-1} = \dfrac{1}{4}\left[\begin{array}{ccc}3&1\\-1&1\end{array}\right]}\\\therefore \displaystyle \large{X = \dfrac{1}{4}\left[\begin{array}{ccc}3&1\\-1&1\end{array}\right] \left[\begin{array}{ccc}1\\9\end{array}\right]}[/tex]

Evaluate the matrices:

[tex]\displaystyle \large{X= \dfrac{1}{4}\left[\begin{array}{ccc}3(1)+1(9)\\-1(1)+1(9)\end{array}\right] }\\\displaystyle \large{X= \dfrac{1}{4}\left[\begin{array}{ccc}3+9\\-1+9\end{array}\right] }\\\displaystyle \large{X= \dfrac{1}{4}\left[\begin{array}{ccc}12\\8\end{array}\right]}\\\displaystyle \large{X= \left[\begin{array}{ccc}3\\2\end{array}\right] }\\\therefore \displaystyle \large{\left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}3\\2\end{array}\right]}[/tex]

Therefore, the solution is x = 3 and y = 2