Respuesta :

Hemo4

Answer: [tex]12\pi[/tex]

Step-by-step explanation:

The formula for area of a circle is [tex]\pi r^2=A[/tex]

The formula for circumference of a circle is [tex]2r\pi=C[/tex]

Where r is the radius

A is area

C is circumference

Knowing this we can sub our values in and solve for r in the formula for area

Divide both sides by [tex]\pi[/tex] to isolate r

[tex]\pi r^2=A\\\pi r^2=36\pi \\\frac{\pi r^2}{\pi } =\frac{36\pi }{\pi } \\r^2=36[/tex]

Take the square root of both sides

[tex]r^2=36\\\sqrt{r^2} =\sqrt{36} \\r=6[/tex]

Now sub the value of r into the formula for circumference

[tex]2r\pi =C\\2(6)\pi =C\\12\pi[/tex]

Answer:

[tex]12\pi \: c \: m[/tex]

step by step explanation:

[tex]area \: of \: a \: cirle = \pi \: r {}^{2} \\ circmferene \: of \: a \: circle = 2 \:\pi \: r \\ 36\pi = \pi \: r {}^{2} \\ 36 = r {}^{2} \\ r = 6 \\ for \: circmference \\ 2 \times \pi \: \times 6 = 12\ \: \pi \: cm [/tex]