Answer:
[tex] \sf m \angle TQR = 87 \degree[/tex]
Step-by-step explanation:
Given:
∆QRT, ∆RSQ and ∆ QST are scalene traingle.
[tex]m \angle QRS = 37 \degree \\ m \angle TQS = 34 \degree \\ m \angle QST = 90 \degree[/tex]
To find:
[tex]m \angle TQR = ?[/tex]
Solution:
In ∆ QTS,
[tex] \sf \: m \angle TQS + m \angle QTS +m \angle QST = 180 \degree \: \\ \sf (properties \: of \: triangle)[/tex]
[tex] \sf \: 34 + m \angle QTS +90 = 180 \degree \: \\ \sf m \angle QTS = 180 - 90 - 34 \\ \sf \: m \angle QTS = 180 - 124 \\ \sf \: m \angle QTS = 56 \degree[/tex]
Now in ∆QTR,
[tex] \sf \: m \angle QTR + m \angle TQR + m \angle TRQ \: = 180 \degree \\ \sf (properties \: of \: triangle)[/tex]
[tex] \sf \: 56 + m \angle TQR + 37 \: = 180 \degree \\ \sf m \angle TQR = 180 - 56 - 37 \\ \sf m \angle TQR = 87 \degree[/tex]
Thanks for joining brainly community!