Respuesta :

Answer:

24π inches

Step-by-step explanation:

The area of a circle is denoted by: , where r is the radius. Here, we know that the area is A = , so we can plug this in to find r:

A = [tex]\pi r^{2}[/tex]

[tex]144\pi = \pi r^{2}[/tex]

[tex]r^{2}[/tex] = 144

r = 12

The circumference is denoted by: , where r is the radius. We've found the radius so just plug 12 in for r:

Thus, the circumference is 24π inches.

Hope this helps!

Correct Question :

The area of a circle is 144π in². What is the circumference, in inches? Express your answer in terms of pi.

[tex] \: [/tex]

Step-by-step explanation:

Before finding the circumference of the circle, we have to find the radius of it.

We already know that,

[tex] \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{ \pi r{}^{2} = \: \: Area_{(circle)}}}}}} \: \: \bigstar \\ \\ [/tex]

So, using this formula we'll find the radius and now we'll substitute the given values :

[tex] \longrightarrow \qquad{ \sf{ \pi \times r{}^{2} = \: 144 \pi }} \\ \\[/tex]

Cancelling π from both sides we get :

[tex]\longrightarrow \qquad{ \sf{ \cancel\pi \times r{}^{2} = \: 144 \cancel\pi }} \\ \\[/tex]

[tex]\longrightarrow \qquad{ \sf{ r{}^{2} = \: 144 }} \\ \\ [/tex]

[tex]\longrightarrow \qquad{ \sf{ r{}^{} = \: \sqrt{144} }} \\ \\ [/tex]

[tex]\longrightarrow \qquad{ \sf{ \pmb{ r{}^{} = \: 12 }}} \\ \\ [/tex]

So,

  • The radius of the circle is 12 inches.

[tex] \\ [/tex]

Now we'll find the circumference of the circle :

[tex] \\{ \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{ \: \: Circumference_{(circle)} = 2 \pi r}}}}}} \: \: \bigstar \\ \\ [/tex]

Now, we'll substitute the required values in the formula :

[tex] \\ { \longrightarrow \qquad{ \sf{ \: \: Circumference_{(circle)} = 2 \times \pi \times 12}}} \: \: \\ \\ [/tex]

[tex]{ \longrightarrow \qquad{ \sf{ \: \: Circumference_{(circle)} = 2 \times 12 \pi }}} \: \: \\ \\ [/tex]

[tex]{ \longrightarrow \qquad{ \sf{ \pmb{ \: \: Circumference_{(circle)} = 24 \pi }}}} \: \: \\ \\ [/tex]

Therefore,

  • The circumference of the circle is 24π inches