Respuesta :

Nayefx

Answer:

√3

Step-by-step explanation:

To recall trigonometric ratios, there is a special acronym known as sohcahtoa which stands for

  • sin(x)=opposite/ hypotenuse
  • cos(x)=adjacent/hypotenuse
  • tan(x)=opposite /hypotenuse

Finding the angle [tex]\theta[/tex]

We are given that,

[tex] \displaystyle \sin( \theta) = \frac{ \sqrt{3} }{2} [/tex]

To find the angle [tex]\theta[/tex] , take inverse of sin of both sides,

[tex] \displaystyle { \sin}^{ - 1}( \sin( \theta) )= { \sin}^{ - 1} \bigg(\frac{ \sqrt{3} }{2} \bigg )[/tex]

with the help of unit circle,we acquire:

[tex] \displaystyle \boxed{\theta= {60}^{ \circ} }[/tex]

Finding [tex]\tan\theta[/tex]

simply plug in the value of theta:

[tex] \tan( {60}^{ \circ} ) [/tex]

using unit circle,we get:

[tex] \implies \tan( {60}^{ \circ} ) = \boxed{\sqrt{3} }[/tex]

and we're done!

Ver imagen Nayefx

Let's solve

[tex]\\ \rm\Rrightarrow sin\theta=\dfrac{\sqrt{3}}{2}[/tex]

[tex]\\ \rm\Rrightarrow \theta=sin^{-1}\left(\dfrac{\sqrt{3}}{2}\right)[/tex]

[tex]\\ \rm\Rrightarrow \theta=\dfrac{\pi}{3}[/tex]

Now

[tex]\\ \rm\Rrightarrow tan\theta=tan\dfrac{\pi}{3}[/tex]

[tex]\\ \rm\Rrightarrow tan\theta=\sqrt{3}[/tex]