Answer: [tex]f(x)=2x^2+5[/tex]
Step-by-step explanation:
First integrate f'(x) so we can find the funtion f(x):
[tex]4\int\limits {x} \, dx =4[\frac{1}{2} x^2]=2x^2+C=f(x)[/tex]
The initial conditions say that when x = 0, the function equals 5. Let's write that down:
[tex]f(0)=5=2(0^2)+C=C[/tex]
Therefore, the integration constant 'C' must equal 5. This means that our function is:
[tex]f(x)=2x^2+5[/tex]