The radioactive substance uranium-240 has a half-life of 14 hours. The amount
A(t) of a sample of uranium-240 remaining (in grams) after t hours is given by the following exponential function.
At = 3900(1/2) t/14
Find the initial amount in the sample and the amount remaining after 60 hours.
Round your answers to the nearest gram as necessary.

PLEASE HELP ASAP

Respuesta :

Answer:

See analyris

Step-by-step explanation:

[tex]Hlug\ in\ the\ value\ of \left.\ t.\right\}[/tex]

[tex]The\ infital\ ampunt\ in\ the\ sample:[/tex]

[tex]t=0_{-1}\ \ \ \ \ f(t)=39\omega\bullet(\frac{1}{2})^\frac{0}{14}[/tex]

                        [tex]=3900\ g.[/tex]

[tex]Ater\ bo\ busis.[/tex]

[tex]t=6,\ \ \ \ \ A(t)=2900\times(\frac{1}{2})^\frac{60}{14}[/tex]

                       [tex]=3900\times(\frac{1}{2})^\frac{30}{7}[/tex]

                       [tex]\approx 209.[/tex]

I hope this helps you

:)