Respuesta :

Answer:

[tex]y=\dfrac{3}{2}x+6[/tex]

Step-by-step explanation:

Slope-intercept form of a linear equation:

 [tex]y=mx+b[/tex]

where:

  • m is the slope
  • b is the y-intercept

Given equation:

 [tex]3x-2y=-12[/tex]

To write the given equation in slope-intercept form, apply arithmetic operations to isolate the variable y.

Add 2y to both sides:

[tex]\implies 3x-2y+2y=-12+2y[/tex]

[tex]\implies 3x=2y-12[/tex]

Add 12 to both sides:

[tex]\implies 3x+12=2y-12+12[/tex]

[tex]\implies 3x+12=2y[/tex]

Switch sides:

[tex]\implies 2y=3x+12[/tex]

Divide both sides by 2:

[tex]\implies \dfrac{2y}{2}=\dfrac{3x+12}{2}[/tex]

[tex]\implies \dfrac{2y}{2}=\dfrac{3x}{2}+\dfrac{12}{2}[/tex]

[tex]\implies y=\dfrac{3}{2}x+6[/tex]

Therefore, the slope-intercept form of the given equation is:

[tex]y=\dfrac{3}{2}x+6[/tex]

where 3/2 is the slope, and 6 is the y-intercept

Learn more about Slope-intercept form here:

https://brainly.com/question/27926846

Slope intercept form y=mx+b

Let's find

  • 3x-2y=-12
  • 3x+12=2y
  • y=3/2x+12/2
  • y=3/2x+6

Done!