Respuesta :

i)

Factor using completing square method

[tex]\dashrightarrow \sf y = -x^2+16x-64[/tex]

[tex]\dashrightarrow \sf y = -(x^2-16x+64)[/tex]

[tex]\dashrightarrow \sf y = -(x^2-8x-8x+64)[/tex]

[tex]\dashrightarrow \sf y = -(x(x-8)-8(x-8))[/tex]

[tex]\dashrightarrow \sf y = -((x-8)(x-8))[/tex]

ii)

Find zeros of a function, f(x) = 0

[tex]\dashrightarrow \sf -((x-8)(x-8))=0[/tex]

[tex]\dashrightarrow \sf (x-8)=0, \ (x-8)=0[/tex]

[tex]\dashrightarrow \sf x = 8[/tex]

iii)

In order to find vertex use the formulae : x =  -b/2a

[tex]\dashrightarrow \sf x = \dfrac{-(16)}{2(-1)}[/tex]

[tex]\dashrightarrow \sf x = 8[/tex]

Then find y:

[tex]\dashrightarrow \sf y = -(8)^2+16(8)-64[/tex]

[tex]\dashrightarrow \sf y = 0[/tex]

coordinates: (8, 0)

iv) Sketched Below:

Ver imagen fieryanswererft
  • y=-x²+16x-64

#1

  • y=-x²+8x+8x-64
  • y=-x(x+8)+8(x+8)
  • y=(x+8)(-x+8)
  • y=-(x-8)(x-8)

#2

Zeros are the x intercepts

Here they are

  • 8,8

#3

  • y=-x²+16x-64
  • y=-[x²-16x+64]
  • y=-(x-8)²+0

Vertex form of parabola:-y=a(x-h)²+k

  • Vertex=(h,k)=(8,0)

#4

Attached

Ver imagen Аноним