A value in the interval (-∞,-2√5] ∪[2√5,∞) will give the two real number solutions.
Given quadratic equation is:
[tex]x^{2} +bx+5=0[/tex]
Any equation of the form [tex]ax^{2} +bx+c=0[/tex] is called a quadratic equation where a≠0.
To have two real number solutions the discriminant of a quadratic equation should be greater than or equal to zero.
[tex]b^{2} -4(1)(5)\geq 0[/tex]
[tex]b^{2} -20\geq 0[/tex]
[tex]b^{2} -(2\sqrt{5} )^2\geq 0[/tex]
[tex](b+2\sqrt{5} )(b-2\sqrt{5} )\geq 0[/tex]
[tex]b\in(-\infty,-2\sqrt{5} ]\cup [2\sqrt{5} ,\infty)[/tex]
Hence, a value in the interval (-∞,-2√5] ∪[2√5,∞) will give the two real number solutions.
To get more about quadratic equations visit:
brainly.com/question/1214333