Respuesta :
[tex]5\sqrt{3x+1} = 10\\\\\implies \sqrt{3x+1} = \dfrac{10}5 \\\\\implies \sqrt{3x+1} = 2 \\\\\implies 3x +1 = 4\\\\\implies 3x = 4-1 \\\\\implies 3x = 3\\\\\implies x =1[/tex]
Answer:
x = 1
Step-by-step explanation:
Given equation:
[tex]\dfrac{5(3x+1)^1}{2} =10[/tex]
If a term has "1" as it's exponent, it means that it's the number itself. Therefore, we can remove the "exponent".
[tex]:\implies\dfrac{5(3x+1)}{2} =10[/tex]
Simplify the distributive property:
[tex]:\implies\dfrac{15x+5}{2} =10[/tex]
Using cross multiplication:
[tex]:\implies15x+5} =10 \times 2[/tex]
Simplify the R.H.S:
[tex]:\implies15x+5} =20[/tex]
Subtract 5 both sides:
[tex]:\implies15x+5 - 5} =20 - 5[/tex]
Simplify both sides:
[tex]:\implies15x} =15[/tex]
Divide 15 both sides:
[tex]:\implies\dfrac{15x}{15} } =\dfrac{15}{15}[/tex]
Simplify both sides:
[tex]:\implies x= 1[/tex]