Respuesta :

[tex]\\ \rm\dashrightarrow x^{\frac{2}{7}}[/tex]

[tex]\\ \rm\dashrightarrow x^{2(1/7)}[/tex]

[tex]\\ \rm\dashrightarrow \sqrt[7]{x^2}[/tex]

And

[tex]\\ \rm\dashrightarrow \sqrt[3]{2y}[/tex]

[tex]\\ \rm\dashrightarrow 2y^{\frac{1}{3}}[/tex]

Nayefx

Answer:

see below

Step-by-step explanation:

Problem-1:

[tex] {x}^{ \frac{2}{7} } [/tex]

remember that,

[tex]\displaystyle {x}^{ \frac{a}{b} } = \sqrt[b]{ {x}^{a} } [/tex]

here,

  • a=2
  • b=7

hence,

[tex] {x}^{ \frac{2}{7} } = \boxed{\sqrt[7]{ {x}^{2} } }[/tex]

Problem-2:

recall that,

[tex] \sqrt[n]{x} = {x}^{ \frac{1}{n} } [/tex]

therefore,

[tex] \sqrt[3]{2y} = (2y {)}^{ \frac{1}{3} } \implies \boxed{{2 }^{ \frac{1}{3} } {y}^{ \frac{1}{3} } }[/tex]