Respuesta :
[tex]\\ \rm\dashrightarrow x^{\frac{2}{7}}[/tex]
[tex]\\ \rm\dashrightarrow x^{2(1/7)}[/tex]
[tex]\\ \rm\dashrightarrow \sqrt[7]{x^2}[/tex]
And
[tex]\\ \rm\dashrightarrow \sqrt[3]{2y}[/tex]
[tex]\\ \rm\dashrightarrow 2y^{\frac{1}{3}}[/tex]
Answer:
see below
Step-by-step explanation:
Problem-1:
[tex] {x}^{ \frac{2}{7} } [/tex]
remember that,
[tex]\displaystyle {x}^{ \frac{a}{b} } = \sqrt[b]{ {x}^{a} } [/tex]
here,
- a=2
- b=7
hence,
[tex] {x}^{ \frac{2}{7} } = \boxed{\sqrt[7]{ {x}^{2} } }[/tex]
Problem-2:
recall that,
[tex] \sqrt[n]{x} = {x}^{ \frac{1}{n} } [/tex]
therefore,
[tex] \sqrt[3]{2y} = (2y {)}^{ \frac{1}{3} } \implies \boxed{{2 }^{ \frac{1}{3} } {y}^{ \frac{1}{3} } }[/tex]