Respuesta :

Hemo4

Step-by-step explanation:

2) [tex]8\leq \frac{w}{8}[/tex]

Multiply 8 on both sides to isolate w

[tex]8\leq \frac{w}{8}\\(8)8\leq \frac{w}{8}(8)\\64\leq w[/tex]

3) [tex]18 < f-2[/tex]

Add 2 on both sides to isolate f

[tex]18 < f-2\\18 +2 < f-2+2\\20 < f[/tex]

4) [tex]\frac{y}{12} < 4[/tex]

Multiply 12 on both sides to isolate y

[tex]\frac{y}{12} < 4\\\frac{y}{12}(12) < 4(12)\\y < 48[/tex]

5) [tex]6 < r+6[/tex]

Subtract 6 from both sides to isolate r

[tex]6 < r+6\\6-6 < r+6-6\\0 < r[/tex]

6) [tex]10 > 7+x[/tex]

Subtract 7 from both sides to isolate x

[tex]10 > 7+x\\10-7 > 7-7+x\\3 > x[/tex]

7) [tex]n+1\leq 6[/tex]

Subtract 1 from both sides to isolate n

[tex]n+1\leq 6\\n+1-1\leq 6-1\\n\leq 5[/tex]

8) [tex]9x\leq 18[/tex]

Divide both sides by 9 to isolate x

[tex]9x\leq 18\\\frac{9x}{9} \leq \frac{18}{9} \\x\leq 2[/tex]

9) [tex]p+3 > 9[/tex]

Subtract both sides by 3 to isolate p

[tex]p+3 > 9\\p+3-3 > 9-3\\p > 6[/tex]

10) [tex]4\leq \frac{c}{3}[/tex]

Multiply both sides by 3 to isolate c

[tex]4\leq \frac{c}{3}\\(3)4\leq \frac{c}{3}(3)\\12\leq c[/tex]

11) [tex]k-13\leq 7[/tex]

Add 13 to both sides to isolate k

[tex]k-13\leq 7\\k-13+13\leq 7+13\\k\leq 20[/tex]

12) [tex]15 > 5x[/tex]

Divide both sides by 5 to isolate x

[tex]15 > 5x\\\frac{15}{5} > \frac{5x}{5} \\3 > x[/tex]