Respuesta :

Yes; Find the range for the measure of the third side of a triangle given the measures of two sides.

Answer:

No

Step-by-step explanation:

for the sides to form a triangle then the sum of any 2 must be greater than the third.

[tex]\frac{3}{8}[/tex] , 1 [tex]\frac{1}{6}[/tex] , [tex]\frac{3}{4}[/tex] ( change 1 [tex]\frac{1}{6}[/tex] into an imprioper fraction )

[tex]\frac{3}{8}[/tex] , [tex]\frac{7}{6}[/tex] , [tex]\frac{3}{4}[/tex]

rewrite each fraction with a denominator of 24 ( the LCM of 8,6,4 )

This will allow the fractions to be compared more easily.

[tex]\frac{9}{24}[/tex] , [tex]\frac{28}{24}[/tex] , [tex]\frac{18}{24}[/tex]

[tex]\frac{9}{24}[/tex] + [tex]\frac{28}{24}[/tex] = [tex]\frac{37}{24}[/tex] > [tex]\frac{18}{24}[/tex]

[tex]\frac{28}{24}[/tex] + [tex]\frac{18}{24}[/tex] = [tex]\frac{46}{24}[/tex] > [tex]\frac{9}{24}[/tex]

[tex]\frac{9}{24}[/tex] + [tex]\frac{18}{24}[/tex] = [tex]\frac{27}{24}[/tex] < [tex]\frac{28}{24}[/tex]

the condition is not met for the 3 sides , so they do not form a triangle.