i don't have much time left could someone help me super quickly (trinomials) btw you could get extra 50 points from a previous question on my profile (only if you want) i would really appreciate if i could have help understanding things

i dont have much time left could someone help me super quickly trinomials btw you could get extra 50 points from a previous question on my profile only if you w class=
i dont have much time left could someone help me super quickly trinomials btw you could get extra 50 points from a previous question on my profile only if you w class=

Respuesta :

Answer:

(a)  [tex](x-2)(x+4)[/tex]

zeros: x = 2, x = -4

vertex: (-1, -9)

(b)  [tex]-(x+2)(x+7)[/tex]

zeros: x = -2, x = -7

vertex = (-4.5, 6.25)

Step-by-step explanation:

To factor a quadratic in the form [tex]ax^2+bx+c[/tex]:

  • Find 2 two numbers (d and e) that multiply to [tex]ac[/tex] and sum to [tex]b[/tex]
  • Rewrite [tex]b[/tex] as the sum of these 2 numbers: [tex]d+e=b[/tex]
  • Factorize the first two terms and the last two terms separately, then factor out the comment term.

To find zeros of a factored quadratic in the form [tex](ax+b)(cx+d)[/tex]

  • Set each of the parentheses to zero and solve for [tex]x[/tex]

The midpoint between the two zeros is the x-coordinate of the vertex. To find the y-coordinate of the vertex, substitute this into the given equation.

-------------------------------------------------------------------------------------

Question (a)

Factored

Factor  [tex]y=x^2+2x-8[/tex]

[tex]ac=-8[/tex]  and  [tex]d+e=2[/tex]

[tex]\implies d=4[/tex] and [tex]e=-2[/tex]

Rewrite [tex]2x[/tex] as [tex]+4x-2x[/tex]:

[tex]\implies x^2+4x-2x-8[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies x(x+4)-2(x+4)[/tex]

Factor out common term [tex](x+4)[/tex]:

[tex]\implies (x-2)(x+4)[/tex]

Zeros

[tex]\implies (x-2)=0\implies x=2[/tex]

[tex]\implies (x+4)=0\implies x=-4[/tex]

Vertex

[tex]\sf x-value=\dfrac{2+(-4)}{2}=-1[/tex]

[tex]\sf y-value=(-1)^2+2(-1)-8=-9[/tex]

Vertex = (-1, -9)

-------------------------------------------------------------------------------------

Question (b)

Factor  [tex]y=-x^2-9x-14[/tex]

[tex]ac=14[/tex]  and  [tex]d+e=-9[/tex]

[tex]\implies d=-7[/tex] and [tex]e=-2[/tex]

Rewrite [tex]-9x[/tex] as [tex]-7x-2x[/tex]:

[tex]\implies -x^2-7x-2x-14[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies -x(x+7)-2(x+7)[/tex]

Factor out common term [tex](x+7)[/tex]:

[tex]\implies (-x-2)(x+7)[/tex]

Factor [tex](-x-2):-(x+2)[/tex]

[tex]\implies -(x+2)(x+7)[/tex]

Zeros

[tex]\implies -(x+2)=0\implies -x-2=0 \implies x=-2[/tex]

[tex]\implies (x+7)=0\implies x=-7[/tex]

Vertex

[tex]\sf x-value=\dfrac{-2-7}{2}=-4.5[/tex]

[tex]\sf y-value=-(-4.5)^2-9(-4.5)-14=6.25[/tex]

Vertex = (-4.5, 6.25)