What is the length of the diagonal of the rectangle?

Answer:
Step-by-step explanation:
Here we are given Length of the rectangle 17 and Width 12.75. To find length of the diagonal of the rectangle we will substitute the value of length and width in required formula:
We know that,
[tex] \\ \: \: \dashrightarrow \: \: { \underline{ \boxed{ \pink{ \pmb{\mathfrak {Diagonal = \sqrt {(Length)^2 + (Width)^2 }}}}}}} \\ \\ [/tex]
Substituting the required values:
[tex] \\ \: \: \dashrightarrow\sf \: \: Diagonal = {\sqrt{(17)^2 + (12.75)^2}} \\ \\ [/tex]
[tex]\: \: \dashrightarrow\sf \: \: Diagonal = \sqrt{289 + 162.5625} \\ \\ [/tex]
[tex]\: \: \dashrightarrow\sf \: \: Diagonal = \sqrt{451.5625} \\ \\ [/tex]
[tex]\: \: \dashrightarrow \: \: \pink {\underline{ \boxed{ \pmb{\frak {Diagonal = 21.25}}}}} \\ \\ [/tex]
Hence,
Step-by-step explanation:
Given :-
To find :-
⇝ Diagonal of rectangle
Solution :-
Formula for finding length of rectangle =
[tex] \sqrt{(length) {}^{2} + (width) {}^{2} } [/tex]
putting the known values ,
[tex] \sqrt{(17) {}^{2} + (12.75) {}^{2} } [/tex]
[tex] \sqrt{289 + 162.5625} [/tex]
[tex] \sqrt{451.5625} [/tex]
[tex]21.25 \: unit[/tex]