Respuesta :

Answer:

  • Length of diagonal of the rectangle is 21.25 units.

Step-by-step explanation:

Here we are given Length of the rectangle 17 and Width 12.75. To find length of the diagonal of the rectangle we will substitute the value of length and width in required formula:

We know that,

[tex] \\ \: \: \dashrightarrow \: \: { \underline{ \boxed{ \pink{ \pmb{\mathfrak {Diagonal = \sqrt {(Length)^2 + (Width)^2 }}}}}}} \\ \\ [/tex]

Substituting the required values:

[tex] \\ \: \: \dashrightarrow\sf \: \: Diagonal = {\sqrt{(17)^2 + (12.75)^2}} \\ \\ [/tex]

[tex]\: \: \dashrightarrow\sf \: \: Diagonal = \sqrt{289 + 162.5625} \\ \\ [/tex]

[tex]\: \: \dashrightarrow\sf \: \: Diagonal = \sqrt{451.5625} \\ \\ [/tex]

[tex]\: \: \dashrightarrow \: \: \pink {\underline{ \boxed{ \pmb{\frak {Diagonal = 21.25}}}}} \\ \\ [/tex]

Hence,

  • Length of diagonal of the rectangle is 21.25 units.

Step-by-step explanation:

Given :-

  • Length of rectangle = 17 unit
  • width of rectangle = 12.75 unit

To find :-

⇝ Diagonal of rectangle

Solution :-

Formula for finding length of rectangle =

[tex] \sqrt{(length) {}^{2} + (width) {}^{2} } [/tex]

putting the known values ,

[tex] \sqrt{(17) {}^{2} + (12.75) {}^{2} } [/tex]

[tex] \sqrt{289 + 162.5625} [/tex]

[tex] \sqrt{451.5625} [/tex]

[tex]21.25 \: unit[/tex]