Respuesta :
[tex]-24 + 12d= 2(d-3)+22\\\\\implies -24 +12d = 2d-6 +22\\\\\implies 12d-2d-24+6-22 = 0\\\\\implies 10d -40=0 \\\\\implies d = \dfrac{40}{10} = 4\\\\[/tex]
Answer:
- [tex]\boxed{\sf{d=4}}[/tex]
Step-by-step explanation:
In order to solve this equation, you must isolate it on one side of the equation.
Use the distributive property.
Distributive property:
⇒ A(B+C)=AB+AC
⇒ -24+12d=2(d-3)+22
Multiply.
⇒ 2(d-3)+22
⇒ 2d-2*3
⇒ 2*3=6
⇒ 2d-6
Rewrite the problem down.
⇒ 2d-6+22
⇒ -6+22=16
⇒ 2d+16
⇒ -24+12d=2d+16
Then, you add by 24 from both sides.
⇒ -24+12d+24=2d+16+24
Solve.
⇒ 12d=2d+40
Subtract by 2d from both sides.
⇒ 12d-2d=2d+40-2d
Solve.
⇒ 12d-2d=10d
⇒ 10d=40
Divide by 10 from both sides.
⇒ 10d/10=40/10
Solve.
Divide the numbers from left to right.
⇒ 40/10=4
[tex]\Longrightarrow:\boxed{\sf{d=4}}[/tex]
- Therefore, the correct answer is d=4.
I hope this helps! Let me know if you have any questions.