Respuesta :

Answer:

x = 36.3°

using tane rule:

[tex]\sf tan(x)= \dfrac{opposite}{adjacent}[/tex]

Here!

  • x = missing angle
  • opposite = 22
  • adjacent = 30

=============

[tex]\hookrightarrow \sf tan(x) = \dfrac{22}{30}[/tex]

[tex]\hookrightarrow \sf x= tan^{-1}(\dfrac{22}{30} )[/tex]

[tex]\hookrightarrow \sf x= 36.253^{\circ \:}[/tex]

[tex]\hookrightarrow \sf x= 36.3^{\circ \:}[/tex]        ( rounded to nearest tenth of a degree)

Let's find

[tex]\\ \rm\Rrightarrow tan\theta=\dfrac{Perpendicular}{Base}[/tex]

[tex]\\ \rm\Rrightarrow tan\theta=\dfrac{22}{30}[/tex]

[tex]\\ \rm\Rrightarrow tan\theta=\dfrac{11}{15}[/tex]

[tex]\\ \rm\Rrightarrow tan\theta=0.734[/tex]

[tex]\\ \rm\Rrightarrow \theta=tan^{-1}(0.734)[/tex]

[tex]\\ \rm\Rrightarrow \theta=36.278°[/tex]

[tex]\\ \rm\Rrightarrow \theta=36.3°[/tex]