contestada

Name r 13 EUA 18. Find the measure of angle A Date Period A 16 139° B A= 13 20 19. Solve the triangle ABC with side lengths a = 14cm, b = 9cm, c = 6cm a = A= b = B= C= C =​

Name r 13 EUA 18 Find the measure of angle A Date Period A 16 139 B A 13 20 19 Solve the triangle ABC with side lengths a 14cm b 9cm c 6cm a A b B C C class=

Respuesta :

Answer:

A = 137°   a = 14 cm

B = 26°   b = 9 cm

C = 17°   c = 6 cm

Step-by-step explanation:

Cosine rule

[tex]c^2=a^2+b^2-2ab\cos (C)[/tex]

[tex]\implies C=\cos^{-1}\left(\dfrac{c^2-a^2-b^2}{-2ab}\right)[/tex]

where:

  • c is the side opposite angle C
  • a and b are the sides with C as the included angle.

Given:

  • a = 14 cm
  • b = 9 cm
  • c = 6 cm

[tex]\implies C=\cos^{-1}\left(\dfrac{6^2-14^2-9^2}{-2(14)(9)}\right)[/tex]

[tex]\implies C=\cos^{-1}\left(\dfrac{241}{252}\right)[/tex]

[tex]\implies C=16.99128694..\textdegree[/tex]

Sine Rule

[tex]\sf \dfrac{sinA}{a}=\dfrac{sinB}{b}=\dfrac{sinC}{c}[/tex]

(where A, B and C are the angles and a, b and c are the sides opposite the angles)

[tex]\sf \implies \dfrac{sinB}{9}=\dfrac{sin(16.991..)}{6}[/tex]

[tex]\sf \implies B=sin^{-1}\left(\dfrac{9sin(16.991..)}{6}\right)=25.99797699...\textdegree[/tex]

Sum of interior angles of a triangle = 180°

⇒ ∠A + ∠B + ∠C = 180°

⇒ ∠A = 180° - 25.997...°  - 16.9912...°

⇒ ∠A = 137.0107361...°

Ver imagen semsee45