Respuesta :

Answer:

14 [m].

Step-by-step explanation:

1) in the square ABCD AC is diagonal, its length can be calculated as AB*√2;

2) the length of AB can be calculated:

AB=√Area(ABCD); ⇒ AB=√98;

Then

3) AC=√98*√2=14 [m].

Answer:

[tex]14\:m[/tex]

Step-by-step explanation:

ABCD is a square. (Given)

[tex] \implies \: A(square) = \overline{AB} ^{2} \\ \\ \implies \: 98 = \overline{AB} ^{2} \\ \\ \implies \: \overline{AB} = \sqrt{98} \\ \\ \implies \: \overline{AB} = \sqrt{ {7}^{2} \times 2} \\ \\ \implies \: \overline{AB} = 7\sqrt{ 2}\\\\\implies \overline{AC}= \overline{AB} \times \sqrt 2 \\\\\implies \overline{AC}= 7\sqrt{ 2} \times \sqrt 2\\\\\implies \overline{AC}= 14\: m[/tex]