A quadrilateral has two angles that measure 222° and 81°. The other two angles are in a ratio of 6:13. What are the measures of those two angles?

Respuesta :

[tex]\sf\huge\underline{\star Solution:-}[/tex]

[tex]\rightarrow[/tex] Ratio of two angles are 6:13.

So, let the one angle be [tex]\sf{6x}[/tex] and another be [tex]\sf{13x.}[/tex]

As we know that,

Sum of all interior angles of a quadrilateral = [tex]\sf\pink{360°.}[/tex]

So let's sum up the given angles,

[tex]\rightarrow[/tex] [tex]\sf{222°+81°+6x+13x \:=\: 360°}[/tex]

[tex]\rightarrow[/tex] [tex]\sf{303+19x \:=\: 360°}[/tex]

[tex]\rightarrow[/tex] [tex]\sf{19x \:=\: 360-303}[/tex]

[tex]\rightarrow[/tex] [tex]\sf{19x \:=\: 57}[/tex]

[tex]\rightarrow[/tex] [tex]\sf{x \:=\: \frac{19}{57}}[/tex]

[tex]\rightarrow[/tex] [tex]\sf{x \:=\: 3}[/tex]

Hence, [tex]\sf{x \:=\: 3}[/tex]

So, First angle [tex]\sf{= \:6x\: = \:6×3 \:=}[/tex] [tex]\sf\purple{18°.}[/tex]

Second angle [tex]\sf{= \:13x\: = \:13×3 \:=}[/tex] [tex]\sf\purple{39°.}[/tex]

_________________________________

Hope it helps you:)