Respuesta :
For 7 or 11
- S={(1,6),(2,5),(5,2),(6,1),(3,4),(4,3),(6,5),(5,6)}
For 2,3 and 12
- S={(1,1),(1,2),(2,1),(6,6)}
Total:-
8 elements in sample space
Answer:
**Please see attached for the sample space**
- The winning combinations are highlighted in green.
- The losing combinations are highlighted in red.
From inspection of the sample space:
- Total number of ways the sum is 7 or 11 (win) = 8
- Total number of ways the sum is 2, 3 or 12 (lose) = 4
- Total number of possible outcomes = 36
[tex]\sf Probability\:of\:an\:event\:occurring = \dfrac{Number\:of\:ways\:it\:can\:occur}{Total\:number\:of\:possible\:outcomes}[/tex]
[tex]\sf \implies P(win)= \dfrac{8}{36}=\dfrac29[/tex]
[tex]\sf \implies P(lose)= \dfrac{4}{36}=\dfrac19[/tex]
