Respuesta :

Answer:

  • x = 1

Step-by-step explanation:

To prove that this triangle is a right triangle, we need to check the side lengths using pythogoras theorem.

Given:

  • Longest side = 25 units
  • Triangle side lengths: 25, 15x, and 20x

Putting the side lengths into pythogoras theorem:

  • ⇒ [tex]25^{2} = 15^{2} + 20^{2}[/tex]
  • ⇒ [tex]625 = (10x + 5x)^{2} + (20x + 0x)^{2}[/tex]

Using the formula "(a + b)² = a² + 2ab + b²

  • ⇒ [tex]625 =[(10x)^{2} + 2(10x)(5x) + (5x)^{2} ] + [(20x)^{2} + 2(20x)(0) + (0)^{2} ][/tex]
  • ⇒ [tex]625 = [(10x)(10x) + 2(10x)(5x) + (5x)(5x)] + [(20x)(20x)][/tex]
  • ⇒ [tex]625 =[100x^{2} + 100x^{2} + 25x^{2} ] + [400x^{2} ][/tex]
  • ⇒ [tex]625 = 100x^{2} + 100x^{2} + 25x^{2} + 400x^{2}[/tex]
  • ⇒ [tex]625 = 625x^{2}[/tex]

Divide both sides by 625:

  • ⇒ [tex]\frac{625}{625} = \frac{625x^{2}}{625}[/tex]
  • ⇒ [tex]1 = x^{2}[/tex]
  • ⇒ [tex]\sqrt{1} = \sqrt{x^{2} }[/tex]
  • ⇒ [tex]\sqrt{1 \times 1} = \sqrt{x \times x }[/tex]
  • ⇒ [tex]1 = x[/tex]

The value of x that proves this triangle a right triangle is 1.

x = 1

If it is a right angle triangle

→ (short side)² + (short side)² = (long side)²

  • given long side is 25

====================================

  • (15x)² + (20x)² = 25²
  • 225x² + 400x² = 625
  • 625x² = 625
  • x² = 1
  • x = √1
  • x = ±1

as distance is positive

  • x = 1