Respuesta :

Answer:

[tex]\frac{198}{7} \ \text{feet}^{2}[/tex]

Step-by-step explanation:

Given:

  • Diameter of rug = 6 feet

To find the area of the rug, we need to use the formula "πr² or π(D/2)²"

Where:

  • r = radius
  • d = diameter

Since we do not have the radius, we need to substitute the diameter in the formula "π(D/2)²" to determine the area of the rug.

⇒ [tex]\pi (\frac{D}{2} )^{2}[/tex]

⇒ [tex]\pi (\frac{6}{2} )^{2}[/tex]

⇒ [tex]\pi (3 )^{2}[/tex]

⇒ [tex]\pi (3 )(3)[/tex]

⇒ [tex]9\pi[/tex]

Substituting "22/7" as π:

⇒ [tex]9(\frac{22}{7} )[/tex]

⇒ [tex](\frac{198}{7} )[/tex]

When finding the area of ANY shape, do not forget to include the units.

⇒ [tex]\frac{198}{7} \ \text{feet}^{2}[/tex]

Answer:

28.26 ft²

Step-by-step explanation:

Formula:

[tex]\text{Area of circular rug:} = \pi r^{2}[/tex]

Determining the radius of the circular rug:

To determine the radius, we need to divide the diameter by 2.

Given diameter: 6 feet

[tex]\implies {\dfrac{\text{Diameter}}{2} = \text{Radius}[/tex]

[tex]\implies {\dfrac{\text{6}}{2} = \text{Radius}[/tex]

[tex]\implies 3\ \text{feet} = \text{Radius}[/tex]

Replacing the radius in the formula:

[tex]\implies \text{Area of circular rug:} = \pi (3)^{2}[/tex]

Determining the area of the circular rug:

[tex]\implies \text{Area of circular rug:} = \pi (3)^{2}[/tex]

[tex]\implies \text{Area of circular rug:} = 9\pi[/tex]

Replacing π as 3.14 (Approx. measure of π):

[tex]\implies \text{Area of circular rug:} = 9(3.14)[/tex]

[tex]\implies \text{Area of circular rug:} = 28.26 \ \text{ft}^{2}[/tex]