Find the area of the rug. DO NOT ROUND.
what is the area?

Answer:
[tex]\frac{198}{7} \ \text{feet}^{2}[/tex]
Given:
To find the area of the rug, we need to use the formula "πr² or π(D/2)²"
Where:
Since we do not have the radius, we need to substitute the diameter in the formula "π(D/2)²" to determine the area of the rug.
⇒ [tex]\pi (\frac{D}{2} )^{2}[/tex]
⇒ [tex]\pi (\frac{6}{2} )^{2}[/tex]
⇒ [tex]\pi (3 )^{2}[/tex]
⇒ [tex]\pi (3 )(3)[/tex]
⇒ [tex]9\pi[/tex]
Substituting "22/7" as π:
⇒ [tex]9(\frac{22}{7} )[/tex]
⇒ [tex](\frac{198}{7} )[/tex]
When finding the area of ANY shape, do not forget to include the units.
⇒ [tex]\frac{198}{7} \ \text{feet}^{2}[/tex]
Answer:
28.26 ft²
Step-by-step explanation:
Formula:
[tex]\text{Area of circular rug:} = \pi r^{2}[/tex]
Determining the radius of the circular rug:
To determine the radius, we need to divide the diameter by 2.
Given diameter: 6 feet
[tex]\implies {\dfrac{\text{Diameter}}{2} = \text{Radius}[/tex]
[tex]\implies {\dfrac{\text{6}}{2} = \text{Radius}[/tex]
[tex]\implies 3\ \text{feet} = \text{Radius}[/tex]
Replacing the radius in the formula:
[tex]\implies \text{Area of circular rug:} = \pi (3)^{2}[/tex]
Determining the area of the circular rug:
[tex]\implies \text{Area of circular rug:} = \pi (3)^{2}[/tex]
[tex]\implies \text{Area of circular rug:} = 9\pi[/tex]
Replacing π as 3.14 (Approx. measure of π):
[tex]\implies \text{Area of circular rug:} = 9(3.14)[/tex]
[tex]\implies \text{Area of circular rug:} = 28.26 \ \text{ft}^{2}[/tex]