Respuesta :
Answer:
[tex](i+2)^4[/tex]
Step-by-step explanation:
assuming the equation is [tex](\sqrt{2+i})^8[/tex] this simplifies to [tex](i+2)^4[/tex] where i =[tex]\sqrt{-1}[/tex]
Step-by-step explanation:
[tex]( \sqrt{2 + i} ) {}^{8} = (2 + i) {}^{ \frac{1}{2} \times8 } [/tex]
[tex](2 + i) {}^{4} [/tex]
Split this up
[tex](2 + i) {}^{2} \times (2 + i) {}^{2} [/tex]
Use the Perfect Square Trinomial
[tex](a + b) {}^{2} = {a}^{2} + 2ab + {b}^{2} [/tex]
[tex](2 { }^{2} + 2(2)i + {i}^{2} )(2 {}^{2} + 2(2)i + {i}^{2} [/tex]
[tex] {i}^{2} = - 1[/tex]
so
[tex](3 + 4i)(3 + 4i)[/tex]
[tex]9 + 24i - 16[/tex]
[tex] - 7 + 24i[/tex]