Respuesta :

Answer:

[tex]\boxed{{x} > -3}[/tex]

Step-by-step explanation:

Given inequality:

  • [tex]-5x < 15[/tex]

To solve this inequality, we need to isolate the variable on one side and the constant on the other. To do this, we can divide both sides by -5.

[tex]\rightarrowtail -5x < 15[/tex]

[tex]\rightarrowtail \dfrac{-5x}{-5} < \dfrac{15}{-5}[/tex]

[tex]\rightarrowtail x < \dfrac{15}{-5}[/tex]

Note: If we are dividing both sides by a negative integer, the sign changes.

[tex]\rightarrowtail {x} > \dfrac{15}{-5}[/tex]

To simplify 15/-5, we can multiply -1 to the numerators and the denominators. As a result, the negative sign should transfer to the numerator, as when two negative integers multiply each other, the result is a positive integer.

[tex]\rightarrowtail {x} > \dfrac{15}{-5} \times \dfrac{-1}{-1}[/tex]

[tex]\rightarrowtail {x} > \dfrac{-15}{5}[/tex]

[tex]\rightarrowtail \boxed{{x} > -3}[/tex]

Graph:

Ver imagen Аноним

[tex]\huge\text{Hey there!}[/tex]

[tex]\mathsf{-5x < 15}\\\\\large\text{DIVIDE -5 to BOTH SIDES}\\\\\mathsf{\dfrac{-5x}{-5} < \dfrac{15}{-5}}\\\\\large\text{SIMPLIFY IT!}\\\\\mathsf{x > -3}\\\\\huge\textbf{Therefore, your answer is: \boxed{\mathsf{x > -3}}}\huge\checkmark[/tex]

[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]

~[tex]\frak{Amphitrite1040:)}[/tex]