Respuesta :

Answer:

[tex]\sf 47 \dfrac{1}{2} \ ft^2[/tex]

  • area of parallelogram: base * height

Given:

  • [tex]\sf Base: 9\frac{1}{2} \ ft[/tex]
  • [tex]\sf height: 5 \ ft[/tex]

area:

[tex]\hookrightarrow \sf base * height[/tex]

[tex]\hookrightarrow \sf 9\dfrac{1}{2} \ * 5[/tex]

[tex]\hookrightarrow \sf \dfrac{19}{2} \ * 5[/tex]

[tex]\hookrightarrow \sf \dfrac{95}{2}[/tex]

[tex]\hookrightarrow \sf 47 \dfrac{1}{2}[/tex]

Solution:

We know that:

  • Area of parallelogram = Base × Height

Since we know the base and the height, we can simply substitute the base and the height in the area formula.

⇒ 9 1/2 can be written as 9.5

  • [tex]Area \ of \ parallelogram = 9.5 \times 5[/tex]

Now, simplify the expression to find the area.

  • [tex]Area \ of \ parallelogram = 9.5 \times 5[/tex]
  • => [tex]Area \ of \ parallelogram = 9.5 + 9.5 + 9.5 + 9.5 + 9.5[/tex]
  • =>  [tex]Area \ of \ parallelogram = 9 + 9 + 9 + 9 + 9 + 2.5[/tex]
  • => [tex]Area \ of \ parallelogram = 45 + 2.5[/tex]
  • => [tex]\bold{Area \ of \ parallelogram = 47.5 \ ft^{2} }[/tex]

~47.5 can be written as 47 1/2~

Thus, option C is correct.