Enter the coordinates of the point
on the unit circle at the given angle.
240°

EXPLANATION:
To convert degrees to radians, multiply by π / 180 °
since a full circle is 360° or 2π radians.
240°⋅π / 180° radians
Cancel the common factor of 60
4 × π / 3 radians
Combine 4 and π / 3.
4π / 3 radians
HOPE ITS HELPS !!!!!
The coordinates of the points on unit circle at the given angle 240 degrees is[tex](\frac{-1}{2} ,\frac{-\sqrt{3} }{2} )[/tex]
[tex]radians= (degrees)[/tex]×[tex]\frac{\pi }{180}[/tex]
x=rcosθ
y=rsinθ (where r is the radius of circle for unit circle r=1)
According to the question
we have
θ = 240 degrees and, r =1
so, 240 degrees = 240×[tex]\frac{\pi }{180}[/tex]
⇒240 degrees = [tex]\frac{4\pi }{3}[/tex] (in radians)
Therefore, the coordinates of the points on unit circle at angle [tex]\frac{4\pi }{3}[/tex] is calculated as
[tex]x=(1)cos\frac{4\pi }{3}[/tex] (for unit circle r=1)
[tex]x=\frac{-1}{2}[/tex]
And,
[tex]y=(1)sin\frac{4\pi }{3}[/tex] (for unit circle r=1)
[tex]y=\frac{-\sqrt{3} }{2}[/tex]
Hence, the coordinates of the point on unit circle at angle 240 degrees is [tex](\frac{-1}{2} ,\frac{-\sqrt{3} }{2} )[/tex]
Learn more about coordinates of the point on circle here:
https://brainly.in/question/48723898
#SPJ2