Respuesta :

EXPLANATION:

To convert degrees to radians, multiply by π / 180 °

since a full circle is 360° or 2π radians.

240°⋅π / 180° radians

Cancel the common factor of 60

4 × π / 3 radians

Combine 4 and π / 3.

4π / 3 radians

HOPE ITS HELPS !!!!!

The coordinates of the points on unit circle at the given angle 240 degrees is[tex](\frac{-1}{2} ,\frac{-\sqrt{3} }{2} )[/tex]

The formula for calculating Radians is:

[tex]radians= (degrees)[/tex]×[tex]\frac{\pi }{180}[/tex]

Formula for calculating coordinates of  point (x, y) on circle:

x=rcosθ

y=rsinθ           (where r is the radius of  circle for unit circle r=1)

According to the question

we have

θ = 240 degrees and, r =1

so,  240 degrees = 240×[tex]\frac{\pi }{180}[/tex]

⇒240 degrees = [tex]\frac{4\pi }{3}[/tex]   (in radians)

Therefore, the coordinates of the points on unit circle at angle [tex]\frac{4\pi }{3}[/tex] is calculated as

[tex]x=(1)cos\frac{4\pi }{3}[/tex]                    (for unit circle r=1)

[tex]x=\frac{-1}{2}[/tex]

And,

[tex]y=(1)sin\frac{4\pi }{3}[/tex]                 (for unit circle r=1)

[tex]y=\frac{-\sqrt{3} }{2}[/tex]

Hence, the coordinates of the point on unit circle at angle 240 degrees is [tex](\frac{-1}{2} ,\frac{-\sqrt{3} }{2} )[/tex]

Learn more about coordinates of the point on circle here:

https://brainly.in/question/48723898

#SPJ2