Respuesta :

227.1 m³

Explanation:

[tex]\sf \ formula \ of \ volume \ of \ cone \ \ : \dfrac{1}{3} \ \pi \ r^2 \ h[/tex]

[tex]\sf \hookrightarrow \dfrac{1}{3} \pi (4.4)^2 (11.2)[/tex]

[tex]\sf \hookrightarrow \dfrac{1}{3} \pi (216.832)[/tex]

[tex]\sf \hookrightarrow 72.3 \pi \ m^3[/tex]

[tex]\sf \hookrightarrow 227.066 \ m^3[/tex]

[tex]\sf \hookrightarrow 227.1 \ m^3[/tex]

Solution:

We know that:

[tex]Volume \ of \ cone = \pi r^{2} \frac{h}{3} \\\\ Height = 11.2 \ m\\\\ Diameter = 8.8[/tex]

Step-1: Find the radius of the cone.

[tex]Diameter = 2(Radius) \\\\ 8.8 \ m = 2(Radius) \\\\ \frac{8.8}{2} = \frac{2(Radius)}{2} \\\\ 4.4 \ m = Radius[/tex]

Step-2: Substitute the radius and the height in the formula.

[tex]Volume \ of \ cone = \pi r^{2} \frac{h}{3} \\\\ Volume \ of \ cone = (3.14)( 4.4^{2})( \frac{11.2}{3})\\\\ Volume\ of \ cone = (3.14)(19.36)( \frac{11.2}{3}) \\\\ Volume \ of \ cone = \frac{680.85}{3} = \bold{226.95 = 227 \ m^{3} \ (Rounded)}[/tex]

Thus, the volume of the cone is about 227 m³.