Find the CI, if Rs 5000 was invested for 2 years at 10% p.a. compounded half-yearly?

Best answers needed
Quickly! pls!
Don't Spam ​

Respuesta :

Answer:

Given:

  • A sum of Rs 5000 was invested for 2 years at 10% p.a. compounded half - yearly.

To Find:

  • The compound Interest.

Solution:

Firstly, we have to find the amount:

According, to the question by using the formula, we get:

[tex] \longmapsto \: { \bold{ \boxed{\pink{ \rm{A \: = P \left( 1 + \frac{ \frac{r}{2} }{100} \right)^{2n} }}}}}[/tex]

Here,

  • Amount (A) = A
  • Principal (P) = Rs 5000
  • Rate of Interest (r) = 10% p.a
  • Time Period (n) = 2 years

So by putting their values, we get:

[tex] { \large{\longrightarrow{ \rm{A = 5000 \left( 1 + \frac{ \frac{10}{2} }{100} \right)^{2 \times 2} }}}}[/tex]

[tex] { \large{ \longrightarrow{ \rm{A = 5000 \left( 1 + \frac{10}{2} \times \frac{1}{100} \right)^{4} }}}}[/tex]

[tex] {\large{ \longrightarrow{ \rm{A = 5000 \left( 1 + \frac{10 \times 1}{2 \times 100} \right)^{4} }}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left(1 + \frac{10}{200} \right)^{4} }}}}[/tex]

[tex]{ \large \longrightarrow {\rm{A =5000 \left( \frac{200 \times 1 + 10}{200} \right)^{4} }}}[/tex]

[tex]{ \large \longrightarrow{ \rm{A = 5000 \left( \frac{200 + 10}{200} \right)^{4} }}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{210}{200} \right)^{4} }}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{210}{200} \times \frac{210}{200} \times \frac{210}{200} \times \frac{210}{200} \right)}}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{210 \times 210 \times 210 \times 210}{200 \times 200 \times 200 \times 200} \right)}}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{1944810000}{1600000000} \right)}}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \times \frac{1944810000}{1600000000} }}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \times \frac{194481}{160000} }}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 5 \times \frac{194481}{160} }}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = \frac{972405}{160} }}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{A = 6077.53 \: (approx.)}}}}[/tex]

Hence, the amount is Rs 6078.

Now, we have to find the compound Interest:

According, to the question by using the formula, we get:

[tex]{ \large{ \dashrightarrow{ \boxed{\green{ \rm{Compound \: Interest = A \: - \: P}}}}}}[/tex]

Here,

  • Amount (A) = Rs 6078
  • Principal (P) = Rs 5000

So, by putting their values we get:-

[tex] { \large{ \dashrightarrow{ \rm{Compound \: Interest = Rs \: 6078 \: - \: Rs \: 5000}}}}[/tex]

[tex]{ \large{ \dashrightarrow{ \rm{Compound \: Interest = Rs \: 1078}}}}[/tex]

Hence, Compound Interest is Rs 1078.