Respuesta :
Answer:
Given:
- A sum of Rs 5000 was invested for 2 years at 10% p.a. compounded half - yearly.
To Find:
- The compound Interest.
Solution:
★ Firstly, we have to find the amount:
According, to the question by using the formula, we get:
[tex] \longmapsto \: { \bold{ \boxed{\pink{ \rm{A \: = P \left( 1 + \frac{ \frac{r}{2} }{100} \right)^{2n} }}}}}[/tex]
Here,
- Amount (A) = A
- Principal (P) = Rs 5000
- Rate of Interest (r) = 10% p.a
- Time Period (n) = 2 years
So by putting their values, we get:
[tex] { \large{\longrightarrow{ \rm{A = 5000 \left( 1 + \frac{ \frac{10}{2} }{100} \right)^{2 \times 2} }}}}[/tex]
[tex] { \large{ \longrightarrow{ \rm{A = 5000 \left( 1 + \frac{10}{2} \times \frac{1}{100} \right)^{4} }}}}[/tex]
[tex] {\large{ \longrightarrow{ \rm{A = 5000 \left( 1 + \frac{10 \times 1}{2 \times 100} \right)^{4} }}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left(1 + \frac{10}{200} \right)^{4} }}}}[/tex]
[tex]{ \large \longrightarrow {\rm{A =5000 \left( \frac{200 \times 1 + 10}{200} \right)^{4} }}}[/tex]
[tex]{ \large \longrightarrow{ \rm{A = 5000 \left( \frac{200 + 10}{200} \right)^{4} }}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{210}{200} \right)^{4} }}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{210}{200} \times \frac{210}{200} \times \frac{210}{200} \times \frac{210}{200} \right)}}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{210 \times 210 \times 210 \times 210}{200 \times 200 \times 200 \times 200} \right)}}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \left( \frac{1944810000}{1600000000} \right)}}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \times \frac{1944810000}{1600000000} }}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5000 \times \frac{194481}{160000} }}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 5 \times \frac{194481}{160} }}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = \frac{972405}{160} }}}}[/tex]
[tex]{ \large{ \longrightarrow{ \rm{A = 6077.53 \: (approx.)}}}}[/tex]
Hence, the amount is Rs 6078.
★ Now, we have to find the compound Interest:
According, to the question by using the formula, we get:
[tex]{ \large{ \dashrightarrow{ \boxed{\green{ \rm{Compound \: Interest = A \: - \: P}}}}}}[/tex]
Here,
- Amount (A) = Rs 6078
- Principal (P) = Rs 5000
So, by putting their values we get:-
[tex] { \large{ \dashrightarrow{ \rm{Compound \: Interest = Rs \: 6078 \: - \: Rs \: 5000}}}}[/tex]
[tex]{ \large{ \dashrightarrow{ \rm{Compound \: Interest = Rs \: 1078}}}}[/tex]
Hence, Compound Interest is Rs 1078.