a) For AQMNO use the Triangle Proportionality Theorem to solve for x. OMN

Answer:
Given for big triangle:
Given for small triangle:
setting up proportionality:
[tex]\hookrightarrow \sf \dfrac{36}{3x+24} = \dfrac{27}{3x+9}[/tex]
[tex]\hookrightarrow \sf 36(3x+9) = 27(3x+24)[/tex]
[tex]\hookrightarrow \sf 108x+324 = 81x+648[/tex]
[tex]\hookrightarrow \sf 108x-81x = 648-324[/tex]
[tex]\hookrightarrow \sf 27x = 324[/tex]
[tex]\hookrightarrow \sf x = 12[/tex]
Perimeter of the triangle:
36 + 17 + 15 + 3x + 9
36 + 17 + 15 + 3(12) + 9
113 units
Answer:
x = 12
perimeter = 113 units
Step-by-step explanation:
Triangle Proportionality Theorem states that if a line parallel to one side of the triangle intersects the other two sides, then it divides the sides into proportional corresponding segments.
[tex]\implies 3x+9 : 15 = (36-9) : 9[/tex]
[tex]\implies 3x+9 : 15 = 27 : 9[/tex]
[tex]\implies \dfrac{3x+9}{15}= \dfrac{27}{9}[/tex]
[tex]\implies 3x+9 = 45[/tex]
[tex]\implies 3x = 36[/tex]
[tex]\implies x = 12[/tex]
Perimeter = [tex]3x+9 + 15 + 17 + 36[/tex]
Substituting [tex]x = 12[/tex]:
⇒ perimeter = 3(12) + 9 + 15 + 17 + 36
= 113