[tex] \qquad\leadsto\sf{10ms^{-1}}[/tex]
A 5kg object has a kinetic energy of 250J. Find the speed of the object by rearranging the formula :[tex]\sf{ KE=v^2\dfrac{m}{2}}[/tex]
Kinetic energy of an object is the energy possessed by the virtue of its motion.
Kinetic energy is given by:
[tex] \quad\hookrightarrow\quad{\pmb{ \sf {KE=\dfrac{mv^2}{2} }}}[/tex]
Here, we are given that:
By using the given formula:
[tex] \implies\quad \sf{ KE =\dfrac{mv^2}{2}}[/tex]
[tex] \implies\quad \sf{ 250 = \dfrac{5\times v^2}{2}}[/tex]
[tex] \implies\quad \sf{\dfrac{ 5}{2}\times v^2 = 250}[/tex]
[tex] \implies\quad \sf{ v^2 =250\times \dfrac{2}{5}}[/tex]
[tex] \implies\quad \sf{v^2 =\cancel{ \dfrac{500}{5}} }[/tex]
[tex] \implies\quad \sf{v^2 = 100 }[/tex]
[tex] \implies\quad \sf{ v =\sqrt{100}}[/tex]
[tex] \implies\quad \sf{v =\sqrt{10\times 10} }[/tex]
[tex] \implies\quad\underline{\underline{\pmb{ \sf{ v = 10\:ms^{-1}}}}}[/tex]