Answer:
- [tex]\sf{67\dfrac{1}{2}\:cm^2} [/tex]
Solution:
Volume of rectangular prism is given by:
ㅤㅤㅤ➙ V = l × b × h
Here, we have :
- length = 6 cm
- Breadth =[tex] \sf{2\dfrac{1}{2}}[/tex]cm.
- height =[tex]\sf{4\dfrac{1}{2}} [/tex]cm
Therefore, volume:
[tex] \implies\quad \tt {V =l\times b\times h }[/tex]
[tex] \implies\quad \tt { V =6\times 2\dfrac{1}{2}\times 4\dfrac{1}{2}}[/tex]
[tex] \implies\quad \small{\tt { V = 6\times \dfrac{(2\times 2)+1}{2}\times \dfrac{(4\times 2)+1}{2}}}[/tex]
[tex] \implies\quad \tt {V = 6\times \dfrac{4+1}{2}\times \dfrac{8+1}{2} }[/tex]
[tex] \implies\quad \tt {V =6\times \dfrac{5}{2}\times\dfrac{9}{2} }[/tex]
[tex] \implies\quad \tt {V =\dfrac{6\times 5\times 9}{2\times 2} }[/tex]
[tex] \implies\quad \tt { V =\cancel{\dfrac{270}{4}}}[/tex]
[tex] \implies\quad \tt { V = \dfrac{135}{2}}[/tex]
[tex] \implies\quad \underline{\underline{\pmb{\tt { V = 67\dfrac{1}{2}\:cm^2}}}}[/tex]