Respuesta :

Paounn

Answer:

[tex]cos2\theta = -frac7{25}[/tex]

Step-by-step explanation:

By using the double angle formula for cosine [tex]cos 2\theta = 2cos^2\theta -1[/tex], replacing the value we have we get

[tex]cos 2\theta = 2 (\frac35)^2 -1 = 2\frac9{25} -1 = \frac{18}{25}-\frac{25}{25} = -\frac{7}{25}[/tex]

Answer:

-7/25

Step-by-step explanation:

Disclaimer: I'm using variable x instead of theta.

Step 1: Simplify cos 2x.

[tex] \cos(2x) = \cos {}^{2} (x) - { \sin {}^{2} (x) }^{2} [/tex]

[tex] \cos(2x) = \cos {}^{2} (x) - (1 - \cos {}^{2} (x) ) [/tex]

[tex]2 \cos {}^{2} (x) - 1[/tex]

We know that cos x= 3/5 so that means

[tex] 2(\frac{3}{5} ){}^{2} - 1 = 2( \frac{9}{25} ) - 1 = \frac{18}{25} - 1 = \frac{ - 7}{25} [/tex]

So the exact value of cos 2x=

[tex] \frac{ - 7}{25} [/tex]

There is another way to find this but this is easier.