Given the following exponential function, identify whether the change represents
growth or decay, and determine the percentage rate of increase or decrease.

Y= 30(1.003)^x

Respuesta :

For the given exponential function, the change represents a growth  and the percentage rate is 0.3%.

Exponential Function

The formula for the exponential function is:

[tex]y(t)=y(0)*(1+R)^t[/tex], where:

y(t)= final value

yo=initial value

R=rate

t= time

When 1+R  > 1, the equation represents growth, while 1+R < 1 the equation represents decay.

The question gives:  [tex]y=30*(1.003)^x[/tex].

When you compare [tex]y=30*(1.003)^x[/tex]with [tex]y(t)=y(0)*(1+R)^t[/tex], it is possible to see:

1. 1+R=1.003, so >1 . Therefore, the change represents growth.

2. 1+R=1.003 , therefore,

                           1.003=1+R

                          R=1.003-1

                          R=0.003

                          then,

                       

                         %R=0.003*100=0.3%

                         

Read more about the exponential function here:

https://brainly.com/question/8935549