Respuesta :

Answer:

[tex]\large\boxed{\red{\sf x =6+\sqrt{53},6-\sqrt{53}} }[/tex]

Step-by-step explanation:

We would like to solve the given quadratic equation by completing the square method .The given equation is ;

[tex]\longrightarrow x^2=12x +17[/tex]

Subtract 12x to both sides ,

[tex]\longrightarrow x^2-12x = 17 [/tex]

Here the co-efficient of x² is already 1 . So , we shall rewrite it as ,

[tex]\longrightarrow x^2-2(6)(x) = 17 [/tex]

Add 6² on both sides ,

[tex]\longrightarrow x^2-2(6)(x) + 6^2=17+6^2 [/tex]

Now LHS is in the form of (a-b)² = a²-2ab+ ; so that ;

[tex]\longrightarrow (x -6)^2 = 17+36 [/tex]

Simplify RHS ,

[tex]\longrightarrow (x-6)^2=53 [/tex]

Put square root on both sides,

[tex]\longrightarrow (x-6) = \pm\sqrt{53}[/tex]

Add 6 on both sides,

[tex]\longrightarrow x = 6\pm\sqrt{53} [/tex]

Separate the two solutions ,

[tex]\longrightarrow \underline{\underline{x =6+\sqrt{53},6-\sqrt{53}}} [/tex]

And we are done!